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Abstract

A numerical investigation is made of buoyant convection of a paramagnetic fluid in a cubical enclosure under con-

stant gravity g0. Conventional buoyant convection arises by maintaining different temperatures at two opposite vertical

sidewalls. The other walls are thermally insulated. To this basic layout, an electric wire is placed below the bottom hor-

izontal wall to produce a magnetic field. The magnetizing force is induced, which modifies the convective flow and heat

transfer characteristics. Comprehensive numerical solutions have been acquired to the governing equations. Of interest

are the cases when the strength of the magnetizing force is time-periodic. The computed results reveal the presence of

resonance, which is characterized by maximal amplification of the fluctuations of heat transport in the interior. The

flow is shown to resonate to the basic mode of internal gravity oscillations. The study points to the feasibility of using

the time-periodic magnetizing force as an effective regulator of the convective fluid system.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In a very strong magnetic field, an ordinary (non-fer-

rous) fluid, such as air, is subjected to the magnetizing

force. The strength of this force is proportional to the

magnetic susceptibility of the fluid. Understanding the

nature of this force and possible industrial utilization

has received renewed interest in recent years, spurred

by the advent of superconducting magnet.

The flow patterns and associated transport character-

istics of a fluid under the magnetizing force have been

documented for several specific exemplary systems [1–

5]. In particular, the alterations induced in fluid convec-
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tion and combustion were investigated mostly by

numerical and experimental endeavors. Tagawa et al.

[5] performed a numerical study of Rayleigh–Benard

convection of water in the bore space of a superconduct-

ing magnet. It was demonstrated that the fluid flow can

be controlled by an effective use of the magnetizing

force. Here, the flow induced by the magnetizing force

should be distinguished from the more familiar situation

of MHD (magneto-hydrodynamics) flow. In the latter,

the main dynamic component is the Lorentz force, and

the working fluid should be electrically-conducting.

A literature survey reveals that the majority of previ-

ous work dealt with the steady-state convective flow in-

duced by the magnetizing force [1–5]. The objective of

the present study is to illustrate the feasibility of control-

ling the convective fluid system by using the magnetizing

force, which is externally imposed in a time-periodic
ed.
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Nomenclature

~b;~B dimensional and non-dimensional magnetic

induction, ~B ¼~b=ba
ba lmi/L
d diameter of the electric coil

e distance between the electric coil and the

bottom of cube

f frequency of the magnetizing force

fluctuation
~fm magnetizing force, Eq. (2)

g0 gravity acceleration

i electric current in the coil

L length of the cube

p, P dimensional and non-dimensional pressure,

P ¼ ðpþqg0yÞL2
qj2Ra Pr

Pr Prandtl number, m/j
~r;~R dimensional and non-dimensional position

vector, ~R ¼~r=L
Ra Rayleigh number based on gravity accelera-

tion, g0aDTL
3/mj

Rab Rayleigh number of the basic state, Eq. (10)

~s;~S dimensional and non-dimensional periphery

line of the coil, ~S ¼~s=L
d~S non-dimensional tangential vector element

of the coil

T temperature

T0 average temperature, (Th + Tc)/2

DT temperature difference, (Th�Tc)

u,t,w velocity in the x-, y- and z-direction

U,V,W non-dimensional velocity in the X-, Y- and

Z-direction, (U,V,W) = (ut,w)(RaPr)�1/2L/j
~V non-dimensional velocity vector

x,y,z Cartesian coordinates

X,Y,Z non-dimensional Cartesian coordinates,

(X,Y,Z) = (x,y,z)/L

Greek symbols

a volumetric expansion coefficient

v mass magnetic susceptibility

c relative magnetic effect, vb2a=lmg0L
j thermal diffusivity of fluid

lm magnetic permeability

m kinematic viscosity of fluid

h non-dimensional temperature, (T�T0)/DT
q density

s non-dimensional time, s ¼ tðRaPrÞ1=2 j
L2

x non-dimensional frequency of the magnetiz-

ing force, x ¼ f =ððRaPrÞ1=2 j
L2
Þ

Subscripts

c cold wall

h hot wall
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manner. For this purpose, convection of air in the much-

studied differentially-heated cubical enclosure, placed in

a steady uniform gravitational field, g0k̂ , is considered.

The temperatures at the two vertical sidewalls are

respectively Th and Tc, DT (�Th�Tc) > 0. To this con-

ventional differentially-heated buoyancy driven cube,

an externally-imposed magnetic field, varying in a

time-periodic manner, is applied. In realistic situations,

the time-periodic magnetic field can be created with rel-

ative ease by controlling the electric current to the coils

of a superconducting magnet.

In the present flow layout, the magnetizing force is

treated as a body force, similar to the buoyant force.

For purely buoyant convective systems under gravity,

the preceding studies [6–12] established that resonance

occurs when the frequency of external forcing matches

the characteristic natural frequencies of the fluid system.

Resonance is characterized by maximal amplification of

the amplitudes of fluctuation of flow and heat transfer

[6]. Parallel studies [10] disclosed that, for a differen-

tially-heated cavity under gravity, the basic mode of

the system was shown to be the frequency of internal

gravity oscillation.

Numerical computations are made in the present

study of the governing equations, which were formu-
lated for the convective system in a cube modified by

the magnetic effect. It is shown that, by choosing a cor-

rect frequency of the time-periodic externally-imposed

magnetic field, considerable augmentation of the fluctu-

ating amplitudes of flow and heat transfer can be real-

ized. This reinforces the belief that a strong external

magnetic field can be utilized as an effective regulator

of the flow and transport phenomena of the buoyant

convective fluid system.
2. Formulation

The flow configuration is sketched in Fig. 1(a). A

differentially-heated cubical enclosure of length L, is

located, with uniform gravity acting downward (Z-axis)

~g0.
The temperatures at the vertical sidewalls atX = 0 and

X = L are Tc and Th, respectively, with DT(�Th�Tc) > 0.

The other walls are thermally insulated. A horizontal

electric coil of diameter d is positioned at Z = �e, below

the bottom horizontal wall (Z = 0).

The magnetic induction~b caused by the electric coil,

carrying the current i, is described by Biot–Savart�s law,
i.e.,



Fig. 1. (a) Flow layout. (b) Time-periodic electric current.
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~b ¼ � lmi
4p

I
~r � d~s

r3
: ð1Þ

In the above, lm denotes the magnetic permeability of

fluid, and~r the position vector to the element of the coil

d~s .
The magnetizing force~fm, under the magnetic field~b,

can be represented as [1–5]

~fm ¼ qv
2lm

~rb2: ð2Þ

In the above, q stands for the fluid density, and a key

property of the fluid is v, the magnetic susceptibility. For

a paramagnetic substance, the magnetic susceptibility v
is inversely proportional to the absolute temperature,

i.e., v = C/T, where C is a constant [1]. Therefore, if

there are temperature inequalities in the system,

gradients of v are induced, which gives rise to unbal-

anced magnetizing forces. The role of the magnetizing

force is similar to that of the usual gravitational buoy-

ancy force, and these aspects have been amply discussed

[3–5].

The basic equations governing the buoyancy-driven

convective fluid flow, modified by the magnetizing force,

have been formulated [3–5]. The Boussinesq-fluid

approximation (q = qr[1�a(T� Tr)], a being the coeffi-

cient of volumetric expansion and subscript r the refer-

ence state) is invoked for the density–temperature

relationship.
The equations for a paramagnetic fluid, in non-

dimensional form, are

r � ~V ¼ 0; ð3Þ

D~V
Ds

¼ �rP þ Pr
Ra

� �1=2

r2~V þ h �cF ðsÞrB2 þ
0

0

1

0
B@

1
CA

2
64

3
75;

ð4Þ

Dh
Ds

¼ 1

PrRa

� �1=2

r2h: ð5Þ

~B ¼ � 1

4p

I ~R� d~S

R3
: ð6Þ

In the above, non-dimensionalization was imple-

mented as follows:

s ¼ tðRaPrÞ1=2 j

L2
; ðU ; V ;W Þ ¼ ðu; t;wÞðRaPrÞ�1=2 L

j
;

ðX ; Y ; ZÞ ¼ ðx; y; zÞ=L;

h ¼ ðT � T 0Þ
DT

; P ¼ ðp þ qg0yÞL2

qj2RaPr
; B ¼ b=ba;

ba ¼
lmi
L

; ~R ¼~r
L
; ~S ¼~s

L
;

Ra ¼ g0aDTL
3

mj
; Pr ¼ m

j
; c ¼ vb2a

lmg0L
:

It is noted that the gravity-induced buoyancy effect is

measured by Ra, and the influence of magnetizing force,

relative to the gravity effect, is represented in c [3–5]

Also, it is remarked that time is made dimensionless

by using the reciprocal of the Brunt–Väsällä frequency,

N � (RaPr)1/2j/L2. In a stratified fluid in buoyant con-

vection, N indicates the degree of stratification.

In the present problem setting, the effect of time-

periodic magnetic field is modeled by switching the

current in the electric coil periodically between the

‘‘on’’ and ‘‘off’’ modes with frequency f. This is incor-

porated in F(s) in the right-hand-side of Eq. (4), in

which F(s) describes a square wave form with non-

dimensional period 2p/x, x � f/N. Accordingly, as

shown in Fig. 1(b),

F ðsÞ ¼
1 for 2pn=x < s < p=xþ 2pn=x

0 for p=xþ 2pn=x < s < ðnþ 1Þ2p=x

� �
;

where n is the number of cycle.

It should be mentioned that, in practical applications

using a super-conducting magnet, it is a difficult task to

control the magnetic strength in a strictly square wave

form. The square wave form envisioned in the present

study represents an idealized situation to explore the
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fundamental characteristics of buoyant convection un-

der the influence of time-periodic magnetic field.

The boundary conditions are stated as:

U ¼ V ¼ W ¼ 0 on the wall

h ¼ �0:5 at X ¼ 0;

h ¼ 0:5 at X ¼ 1;

oh=oY ¼ 0 at Y ¼ 0; 1;

oh=oZ ¼ 0 at Z ¼ 0; 1:

ð7Þ

The numerical solution to the above system of equa-

tions is acquired by adopting the well-established SIM-

PLER algorithm [13]. Typically, a (50 · 50 · 50) mesh

network was deployed, and grid stretching was imple-

mented. The QUICK scheme [14] was utilized for the

non-linear convective terms. The time step used was

Ds = 2p/(1024x). The present numerical methodologies

and computational details have been widely tested and

validated. The grid- and time step-sensitivity and con-
Y

Z

X

Y

Z=0.5 X=0

X

Y

Z=0.5

Y

Z

X=0

(b

(i)
X

B

∂
∂ 2

(ii)

(ii)(i)

(a)

Fig. 2. (a) Computed magnetic induction vectors: (i) Z = 0.5 plane; (i

gradients of square of magnetic induction. Solid lines-negative valu

oX) = 0.0026, Max j oB2

oX j¼ 0:082; (ii) X = 0.5 plane, D(oB2/oY) = 0.0

Max j oB2

oZ j¼ 0:081.

Table 1

Cross-comparisons of the results for a cusp-shaped magnetic

field (Ra = 105, Pr = 0.71, d/L = 1.5625, e/L = 0.28125)

No gravity Gravity + magnetic

cRa = 105 c = 1.0 c = 10.0

Tagawa et al. [3] 2.870 4.301 6.786

Present results 2.83 4.280 6.851
vergence tests were conducted, and the outcome was

successful. As to the computational procedures, no

claims of innovativeness or novelty are made here; the

calculations were carried out in a routine manner.

In the course of analyzing the computed flow data,

the heat transport across the vertical cross-section is of

interest. This is represented by the Nusselt number Nu

at X = a, which is defined as

NuX¼a ¼
Z 1

0

Z 1

0

UhðRaPrÞ1=2 � oh
oX

� �
X¼a

dY dZ

As an example of code validation, the steady-state

Nusslet number of the present computations is compared

against the results of previous investigations [3]. For this

exemplary coil arrangement, two coils are placed (one

above the top wall, and the other below the bottom wall),

which produced a cusp-shaped magnetic field. The com-

puted Nu values of the present study are consistent with

the published results, as shown in Table 1.
3. Results and discussions

Numerical solutions were secured for the parameter

values in line with the prior computations for steady-

state flows [3–5]: Ra = 107, Pr = 0.7, e/L = 0.4, d/L =

2.0, c = 1.0, 3.0, 5.0 and 10.0, and x = 0.1–1.4. In the
X

Z

.5 Y=0.5

.5

X

Z

Y=0.5

)

Y

B

∂
∂ 2

(iii) Z

B

∂
∂ 2

(iii)

i) X = 0.5 plane; (iii) Y = 0.5 plane. (b) Computed results of the

es, and dashed lines-positive values: (i) Z = 0.5 plane, D(oB2/

086, Max j oB2

oY j¼ 0:082; (iii) Y = 0.5 plane, D(oB2/oZ) = 0.027,
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Fig. 3. Computed results of streak lines (cRa = 107, Pr = 0.7).
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real system (air, L = 0.1 m), c = 10.0 corresponds to

ba = 6.16T, and the components (bx,by,bz) of ~bcubic center

are (0.009, 0.009, 1.232)T.

In processing the data, it is useful to monitor the

amplitude of fluctuation A(/) of a time-periodic variable

/ over a cycle:

Að/Þ ¼ Max½/ðsÞ� �Min½/ðsÞ�
2

; s0 6 s 6 s0 þ 2p=x:
3.1. Cases of steady magnetic field

The magnetic field, which is induced by the steady

current in the electric field, is depicted in Fig. 2.

Obviously, in order to compute the magnetizing force,
X

Z

Velocity vector

Fig. 4. Temperature and velocity vector fields under steady magnetic a

Dh = 0.1).
it is important to examine the gradient of the magnetic

induction squared in each direction, which is illustrated

in Fig. 2(b). It is discernible that the Z-direction gradient

(oB2/oZ) is order-of-magnitude larger than the gradients

in the X- or Y-directions. This justifies the treatment of

the magnetizing force in the right-hand-side of Eq. (4),

which was pointed out in [5]. Simply, in the present for-

mulation, the flow system is subjected to the dominant

vertically(Z)-downward magnetizing force, which is sim-

ilar to the conventional vertically-downward gravity.

In an effort to single out the impact of the magnetiz-

ing force, computations were conducted for the case of a

steady magnetic field in the zero-gravity environment. In

this case, as stipulated in [3–5], the parameter cRa is a

finite quantity. Fig. 3 exemplifies the computed streak-

lines for Pr = 0.7 and cRa = 107. Flows are concentrated

to the boundary regions close to the YZ-plane vertical

walls of the cubic enclosure. When viewed in the direc-

tion of the Y-axis, distinct counter-clockwise circulating

flows are seen. The velocity vector plots in the XZ-plane

(at Y = 0.5) and the temperature field are displayed in

Fig. 4. As is apparent in Figs. 3 and 4, the magnetizing

force, with zero gravity, produces a boundary layer-type

flow adjacent to the YZ-vertical walls, and a nearly stag-

nant interior region is observed. Also, the temperature

field in the interior is well stratified in the vertical direc-

tion. Clearly, these plots are akin to those of the conven-

tional buoyant convection in a differentially-heated

cavity in the constant-gravity environment [15–18].

3.2. Cases of periodic magnetic field under constant

gravity

As ascertained previously, the thrust of the present

task is to inquire as to the possibility of flow control,

by using a time-periodic magnetic field, in a conven-

tional buoyant convective system under ~g ¼~g0.
X

Z

Temperature

nd zero-gravity field. At Y = 0.5 plane (cRa = 107, Pr = 0.7 and
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As illustrated in Fig. 1(b), by the switching operation

of the electric current in the coil, the strength of mag-

netic field fluctuates between 0 and c, with period 2p/
x. The case of non-oscillating magnetic field strength

of c/2 will be referred to as the basic steady-state config-

uration. In the numerical computations, the solution to

the above-referenced steady basic state was obtained

first. This solution was used as the initial condition in

computing the cases of time-periodic magnetic field. In

most cases, the solution settles to a quasi-steady periodic

state after several cycles.

Fig. 5 shows the temporal behavior of Nu(s) at the
vertical midplane X=0.5. The fluctuation of Nu(s) at a
particular moderate value of x (x ffi 0.72 for c = 3.0,

x ffi 0.85 for c = 10.0) is much larger than those at smal-

ler or larger frequencies. Compilation of the numerical

results, as demonstrated in Fig. 6, points to the observa-

tion that the Nu(s)-fluctuation is maximized at a partic-

ular value of x. This is suggestive of the existence of

resonance [6–12]. The A(Nu)–x plots of Fig. 6 indicate

that A(Nu) does not change much at low frequencies.

In a narrow band surrounding x ffi xr, A(Nu) is ampli-
 γ 
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A
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0.0 0.4 0.8 1.2
0.0
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20.0

30.0

  =10.0

ω
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(N

u X
=

0.
5)

(c) γ = 10.0

Fig. 6. A(NuX = 0.5) variation with x (Ra = 107, Pr = 0.7).
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u X
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(b) γ =10.0

Fig. 5. Time-periodic behavior of the Nusselt number at the

vertical mid-plane X = 0.5 (Ra = 107, Pr = 0.7).
fied substantially. As x is increased beyond xr, A(Nu)

decreases rapidly. It is recalled that the A(Nu)–x behav-

ior shown here is qualitatively similar to that of a purely

thermally-driven buoyancy convection [6–12].



Table 2

Comparisons of the estimated resonance frequencies (Eq. (9)),

xi, and the numerical results, xr (Ra = 107, Pr = 0.7)

c Rab xi, Eq. (9) xr, numerical results

3.0 1.23 · 107 0.74 0.72

5.0 1.39 · 107 0.78 0.77

10.0 1.78 · 107 0.88 0.85
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The preceding studies on time-periodic thermal con-

vection [9–12] argued that resonance is anticipated when

the basic mode of natural oscillation of the fluid system

is excited. The characteristic natural frequency in a con-

vection with the background gravity was identified to be

the internal gravity oscillation mode [9–12]. The funda-

mental mode of these oscillations was estimated by Pao-

lucci and Chenoweth [19] as

fi ¼
SðRab PrÞ1=2j=L2ffiffiffi

2
p ; ð8Þ

which can be non-dimensionalized in the present formu-

lation as

xi ¼
Rab
Ra

� �1=2 Sffiffiffi
2

p : ð9Þ

In the above, Sðffi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
oh=oZ

p
Þ represents the overall strat-

ification in the vertical direction in the interior, and Rab
denotes the Rayleigh number of the non-fluctuating

basic state.

In accord with the developments of [9], S is calcu-

lated by using a linear fitting to the averaged vertical

temperature distribution at the vertical mid-plane

X = 0.5. As to the estimation of Rab, it is noted that,

by adding the steady non-fluctuating vertical magnetiz-

ing force, the system can be considered to be subject

to an enhanced effective steady background gravity. This

is made up of the standard terrestrial gravity g0, plus the
(i) τ /τp =0.0

(iii) τ /τp =0.5

Z

Z

X

Z

X

Z

Fig. 7. Time histories of the thermal and velocity fields at Y = 0.5 p

Dh = 0.1).
vertically-directed magnetizing force produced by the

steady current i/2 in the coil, as shown in Fig. 1(b), i.e.,

Rab ¼ 1þ 1

2
c
Z 1

0

Z 1

0

Z 1

0

oB2

oZ
dX dY dZ

� �
Ra: ð10Þ

Comparisons are shown in Table 2 between the esti-

mated resonance frequencies (based on (9) and (10)) and

the results from the numerical computations. Clearly,

agreement between the two sets is satisfactory for all

the computations covered in the present efforts.

Time-histories of thermal and velocity fields under

resonance over a cycle are depicted in Fig. 7. The peri-

odic tilting of isotherms in the interior is notable, which

invigorates the flow and convective transport process.

These observations were discussed in the earlier studies

[9], and these are consistent with the assertion that the

global flow resonates with the internal gravity wave

oscillation.
(ii) τ /τp =0.25

(iv) τ /τp =0.75
X

X

lane under resonance (Ra = 107, Pr = 0.7, c = 10.0, x = 0.85,
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4. Conclusions

Buoyant convection in a cubic enclosure under the

combined effects of magnetizing and gravitational forces

is studied. An electronic coil is placed below the bottom

wall. Under the steady magnetic field in the zero-gravity

environment, the thermal and temperature fields are

akin to those of the conventional buoyant convection

in a differentially-heated cavity in the constant-gravity

environment.

For the cases of time-periodic magnetic field under

constant gravity, the computed results suggest that reso-

nance takes place when the frequency of external forcing

matches the basic mode of internal gravity oscillations.

At the resonance frequency, A(NuX = 0.5) is maximized

and convective activities in the interior are intensified.

These resonance phenomena are similar to those of [6–

12], which considered the resonance phenomena with

the thermal or mechanical forcing.

The finding in the present work suggests that the res-

onant convection in a cube can be accomplished by a rel-

atively simple way by applying a time-periodic magnetic

forcing.
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